## Just when you thought they couldn't get any better!

Flexcon's standard composite well tanks are already top of the line. ProLite SS takes them one step futher by adding a stainless steel elbow and increasing their maximum working pressure to 150 PSI. Combined with Flexcon'spatented, industry benchmark, CAD-2
diaphragm design inside, they're better than ever! If your customers demand the ultimate well tank, go with proven Flexcon performance.

ProLite SS, it just doesn't get any better than this!


Injection molded domes for precise, uniform wall thickness and consistently engineered dome profiles.

High tech spin welding process permanently fuses injection molded domes to the extruded cylinder.

150psi, fiber wound composite shell sealed from the environment with weather resistant epoxy resin. Suitable for underground installation.


CAD-2 diaphragm technology: strong, $100 \%$ butyl diaphragm and copolymer polypropylene lower water chamber for maximum water and air separation.

Tough as nails, noncorrosive, all stainless steel water connection.

Rugged base engineered to withstand maximum loads and extreme environmental conditions.

 E-r.nn



## MATERIALS OF CONSTRUCTION

- Top and bottom domes: Injection molded copolymer polypropylene
- Shell: Extruded copolymer polypropylene
- Outer shell: Fiberglass-wound, coated with epoxy resin
- Water chambers: Top diaphragm is $100 \%$ butyl rubber, lower water chamber is copolymer polypropylene
- Base: Copolymer polypropylene
- Connection: Stainless Steel
- Air valve: Easy to access brass valve with o-ring seal
- Testing: High pressure, seam weld, helium, final precharge check
- Warranty: 5 year limited


2 ISO 9001

COMPOSITE TANK DIMENSIONS

| Model | Total Tank Volume |  | A <br> Height |  | B <br> Floor to CL |  | C <br> Diameter |  | D <br> CL to fitting end |  | E Connection | Total Weight |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | gal | liters | in | cm | in | cm | in | cm | in | cm |  | lbs | kilos |
| CSS 15 | 15 | 56.8 | 25.60 | 65.0 | 1.75 | 4.4 | 16.5 | 41.9 | 9.4 | 23.9 | 1" NPT | 19.0 | 8.6 |
| CSS 22 | 22 | 83.3 | 34.10 | 87.0 | 1.75 | 4.4 | 16.5 | 41.9 | 9.4 | 23.9 | 1" NPT | 24.0 | 10.9 |
| CSS 35 | 35 | 132.5 | 48.90 | 124.2 | 1.75 | 4.4 | 16.5 | 41.9 | 9.4 | 23.9 | 1" NPT | 33.5 | 15.2 |
| CSS 40 | 40 | 151.0 | 39.20 | 99.6 | 2.25 | 5.7 | 21.4 | 54.4 | 11.9 | 30.2 | 1 1/4" NPT | 38.0 | 17.2 |
| CSS 50 | 50 | 189.3 | 43.30 | 110.0 | 2.25 | 5.7 | 21.4 | 54.4 | 11.9 | 30.2 | $11 / 4 "$ NPT | 47.0 | 21.3 |
| CSS 65 | 65 | 246.0 | 53.50 | 130.3 | 2.25 | 5.7 | 21.4 | 54.4 | 11.9 | 30.2 | 1 1/4" NPT | 58.0 | 26.3 |
| CSS 82 | 82 | 310.4 | 64.70 | 164.3 | 2.25 | 5.7 | 21.4 | 54.4 | 11.9 | 30.2 | 1 1/4" NPT | 69.5 | 31.5 |
| CSS 90 | 90 | 340.7 | 57.00 | 145.0 | 2.25 | 5.7 | 24.2 | 61.5 | 13.4 | 34.0 | 1 1/4" NPT | 77.0 | 34.9 |
| CSS 120 | 119 | 450.4 | 72.10 | 183.1 | 2.25 | 5.7 | 24.2 | 61.5 | 13.4 | 34.0 | 1 1/4" NPT | 99.5 | 45.1 |

Maximum working pressure 150 psig. Maximum working temperature, internal \& external $120^{\circ} \mathrm{F}$. Tank pre-charge 38 psig.
QUICK SIZING CHART

| Model | Total Tank Volume |  | 20/40 |  | Total Drawdown*30/50 |  | 40/60 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | gal | liters | gal | liters | gal | liters | gal | liters |
| CSS 15 | 15 | 56.8 | 6.00 | 24.1 | 5.1 | 20.4 | 4.4 | 17.7 |
| CSS 22 | 22 | 83.3 | 8.80 | 32.2 | 7.5 | 27.2 | 6.5 | 23.6 |
| CSS 35 | 35 | 132.5 | 14.10 | 52.3 | 11.9 | 44.2 | 10.3 | 38.3 |
| CSS 40 | 40 | 151.0 | 16.10 | 60.9 | 13.6 | 51.4 | 11.8 | 44.6 |
| CSS 50 | 50 | 189.3 | 20.10 | 76.4 | 17.0 | 64.6 | 14.7 | 56.0 |
| CSS 65 | 65 | 246.0 | 26.10 | 100.5 | 22.1 | 85.0 | 19.1 | 73.6 |
| CSS 82 | 82 | 310.4 | 33.00 | 120.7 | 27.9 | 102.0 | 24.1 | 88.4 |
| CSS 90 | 90 | 340.7 | 36.20 | 136.7 | 30.6 | 115.6 | 26.5 | 100.1 |
| CSS 120 | 119 | 450.4 | 47.90 | 181.0 | 40.5 | 153.0 | 35.0 | 132.5 |

*Total drawdown assumes tank pre-charge set at 2 psi below cut-in pressure. Drawdown can be affected by many factors, including temperature, pressure, and elevation.

